Massenspektrometrie II Arnd Ingendoh

Teil 2 - Ionsationsmethoden

(2) Ionisationsmethoden

- Schematischer Aufbau eines Massenspektrometers
- Übersicht der Ionisationsmethoden
- ESI
 - Prinzip und verwandte Techniken
 - Kopplung mit Trennverfahren
- MALDI
 - Prinzip und verwandte Techniken
- Abgrenzung der Verfahren

 Fourier transformation ion cyclotron resonance (FTMS)

Ionisationsmethoden

Nach: J. Gross, Mass Spectrometry, A Textbook

Elektrospray Ionsation (ESI)

Electrospray: Generation of aerosols and droplets

Prinzip von Elektrospray (ESI)

Elektrospray (ESI): Bild des Sprayprozesses

Source: National Institute of Justice: Technology Transfer Workshop

Aufbau einer ESI Quelle

Source: National Institute of Justice: Technology Transfer Workshop

ESI: vom Tröpfchen zum hochgeladenen Ion

Die Tröpfchen werden durch zwei Prozesse immer kleiner:

- 1. Desolvation (Verdampfung des neutralen Lösemittels und der flüchtigen Puffer durch Aufheizen)
- 2. Tropfenspaltung durch elektrische Abstoßung der Oberflächenladung (die durch die Verkleinerung des Tropfens stark ansteigt)

"Coulomb-Repulsion" bei Erreichen des Rayleigh-Limits der Oberflächenladung

Der Prozess wiederholt sich so lange, bis einzelne hoch-geladene Ionen zurückbleiben, die weiter in den Analysator fliegen

Source: National Institute of Justice: Technology Transfer Workshop

ESI Quelle im Aufriss

Video "EVOQ Tech": 0:15 – 1:15 min

Elektrospray Chemie

Positive Ion Mode Formation of **protonated** Molecular ions

 $M \sqcup \Box \Lambda \leftarrow [M \sqcup \Box] + \sqcup \Lambda$

Negative Ion Mode

Formation of **deprotonated** species

 $M + B \leftrightarrows [M-H]^{-} + BH^{+}$ $\bigcap_{R \to C \to OH}^{O} + B: \leftrightarrows \bigcap_{R \to C \to O^{-}}^{O} + B-H^{+}$

Analytes with a **basic character**, like for instance compounds with amino groups, are easily ionized in positive ion mode by protonation of the molecule.

Acidic compounds (e.g. carboxylic or sulfonic acids, phenols) are ionized in negative ion mode. Due to the loss of a proton the molecule gets negatively charged.

A measure of the basic or acidic character of a sample is its \mathbf{pK}_{a} value.

Lösemittel und Puffer für ESI

Acidic additives for positive ion mode:

- Formic acid, 0.1-1.0%
- Acetic acid, 0.1-1.0%
- Trifluoroacetic Acid (TFA) ≤ 0.05%. TFA anion forms ion pairs with positive analyte ions and thus leads to signal suppression. But TFA concentrations of ≤ 0.05% are acceptable.

Basic additives favor the negative ion mode:

• Ammonium hydroxide (pH 10-11)

Buffers:

- Ammonium acetate
- Ammonium formate

Prefered are always **VOLATILE** buffers. Non-volatile ones may deteriorate the transfer line into the mass spectrometer up to clogging it.

Typisches ESI Massenspektrum

- Molekül der Masse 10.000 Da
- Für ein und dasselbe Molekül entstehen unterschiedlich geladene Ionen (M+nH)ⁿ⁺ (n= Anzahl der H⁺ Ionen auf dem Molekül, die den Ladungszustand n erzeugen).
- Als Signale werden auf der m/z Skala gemessen:
 - n= 1: einfach geladenes (M+H)⁺ mit dem Wert m/z = (10.000 + 1)/1 = 10.001
 - n=2: zweifach geladenes $(M+2H)^{2+}$ mit dem Wert m/z = (10.000 + 2)/2 = 5.001
 - n=3: dreifach geladenes $(M+3H)^{3+}$ mit dem Wert m/z = (10.000 + 3)/3 = 3334,3
 - ...

Berechnung des Molekulargewichts durch "Dekonvolution" der mehrfach geladenen Ionen

 $n^*m_2 = MW + n$ (n+1)*m₁ = MW + (n + 1)

$$n^*m_2 - (n+1)^* m_1 = -1$$

$$n = \frac{(m_1 - 1)}{(m_2 - m_1)}$$

Beispiel von vorheriger Seite: $m_2 = 5001 \text{ und } m_1 = 3334,3$ $n = \frac{(3334,3 - 1)}{(5001 - 3334,3)}$ t: $= \frac{3333,3}{1667,6}$ = 2

Die Software von Massenspektrometern berechnet das vollautomatisch !

ESI Spectrum of Trypsinogen (MW 23.983 Da)

Dekonvolution durch MS-Software

Deconvoluted myoglobin spectrum

Source: Michael Karas, Univ. Frankfurt

ESI: von kleinen Molekülen.....

17

ESI:zu sehr grossen Molekülen

ESI:zu sehr grossen Molekülen

MW = (92 * 14.835,5) - 92 = 1.364.775 Da

Verwandte Modifikationen von ESI: 1. nanoESI

- ESI ist eine konzentrationsabhängige Methode.
- "normale" Flussraten bei ESI liegen zwischen 1 μL/min und 1 mL/min. Je höher der Fluss, desto höher die Verdünnung und damit umso kleiner das sichtbare Messsignal bei einer injizierten Menge an Substanz.
- nanoESI: Flussrate liegt zwischen 100 und 500 nL/min. Durch die geringe Flussrate sind hohe Signale auch f
 ür extrem geringe Probenmengen sichtbar, z.B. aus biologischen Proben (Proteomics !!).

Verwandte Modifikationen von ESI: 1. nanoESI

Source: Michael Karas, Universität Frankfurt

Verwandte Modifikationen von ESI: 2. APCI (Atmospheric Pressure Chemical Ionization)

ESI

APCI

Verwandte Modifikationen von ESI: 2. APCI (Atmospheric Pressure Chemical Ionization)

- 1. Vollständige Verdampfung der Tröpfchen direkt nach der Spraynadel durch zusätzlichen Heizer
- 2. Neutrale Moleküle treten in die Ionisationskammer ein (X= Lösemittel, M=Analytmoleküle)
- 3. Die neutralen Lösemittelmoleküle X werden über eine elektrische Entladung an einer Corona Nadel ionisiert.
- 4. Sie übertragen ihre Ladung (H⁺, NH₃⁺ etc.) auf die neutralen Substanzmoleküle M.

Anwendung: weniger polare Moleküle

Mechanismus der APCI Ionisation

Positive Ionization Reactions

Reagent/Electron Reaction

Reactive Species Formation

N₂⁺ + Solvent ^{gas} ⊢ [Solvent+H]⁺ + N₂

Proton Transfer

[Solvent+H]⁺+ Analyte ______ [Analyte+H]⁺+ Solvent

Negative Ionization Reactions

Electron Capture e- + Solvent phase F [Solvent] Charge Exchange [Solvent] + Analyte phase F [Analyte] + Solvent

Ion Molecule Reactions

Analyte + OH gas - [Analyte-H] + HOH

Verwandte Modifikationen von ESI: 3. APPI (Atmospheric Pressure Photo-Ionization)

```
Ähnlich wie APCI, aber<br/>hier Ionisation durch<br/>starke UV-Strahlung.Direct APPI<br/>M + hv = M^+ + e^-M + hv = M^+ + e^-Protic solvent<br/>Analyte
```


Abgrenzung von ESI, APCI und APPI

Beispiel: Analyse von Rohöl (FTMS)

Beispiel: Analyse von Rohöl (FTMS)

lonization Method	Positive Ionization	Negative ionization
ESI	3820	3760
APCI	4540	3720
APPI	7450	3230
Total (non-redundant)	14700	

Polarität

Online Kopplung mit Trennverfahren

- Bei ESI versprüht man Flüssigkeiten, in denen die Messsubstanz gelöst ist. Im ESI Prozess wird das Lösemittel durch Verdampfung eliminiert.
- Daher ist die direkte Kopplung mit Trennverfahren wie HPLC (High Pressure Liquid Chromatography = Hochdruck-Flüssigchromatographie) oder CE (Kapillar-Elektrophorese) möglich, die ebenfalls mit der Flüssigphase arbeiten.

Prinzip der HPLC (Hochdruck-Flüssigchromatographie)

- Die HPLC trennt Substanzen aufgrund ihrer chemischen Eigenschaften (polar, unpolar, Säure, Base,....).
- Die Substanzen werden in einem Lösemittel (<u>mobile</u> Phase oder Eluent) durch eine Trennsäule (<u>stationäre</u> Phase) gepumpt.
- Wechselwirkt die Substanz stark mit der stationären Phase, verbleibt sie lange in der Säule.
- Je nach Stärke dieser Wechselwirkungen erscheinen die einzelnen Substanzen zu verschiedenen Zeiten (Retentionszeiten RT) am Ende der Trennsäule.
- HPLC wird eingesetzt:
 - zur Aufreinigung von Proben (Abtrennung der Messsubstanzen vom chemischen Hintergrund, "Matrix" wie Lebensmittel, Körperflüssigkeiten, ….) und
 - zur Veringerung der Komplexität von Mischungen (jede Substanz kommt getrennt am MS an)

- Nach der Injektion binden die Komponenten auf der Säule.
- Mit zunehmendem Anteil an organischen Lösemittel lösen sich die Komponenten wieder von der Säule ab.
- Je nach ihren chemischen Eigenschaften geschieht das bei unterschiedlichen Mischungsverhältnissen von H_2O/ACN . Die Komponenten verlassen die Säule zu unterschiedlichen RT und können über eine Zeit Δt detektiert werden.

HPLC Parameter in der MS-Kopplung

- Eluenten: Wasser, organische Lösemittel (MeOH, ACN, ..), Säuren und flüchtige Salze (NH₄⁺, Acetat-, Formiat-, Carbonat-, ...)
- Flussrate: ~ 200 nL/min bis ~ 2 mL/min (davon hängt auch der verwendbare Säulendurchmesser ab – zwischen 50 μm und 4 mm)
- Säulenwahl (Trennmaterial): RP18, RP8, PFP, HILIC,....
- Partikelgrösse des Säulenmaterials: 1.7 μm bis 25 μm (die Trennleistung steigt mit kleinerer Partikelgrösse, aber auch der Druck im Trennsystem steigt überproportional an – Ultrahigh Pressure = UHPLC)
- Temperatur des Säulenofens: bis ca. 60°C (zur Verringerung der Viskosität und Reproduzierbarkeit der Trennung)

HPLC-ESI-MS von Pestiziden in Pflanzen

Mixung von 28 Pestiziden in der Konzentration von 200 pg/ μ L jeweils. Getrennt über eine RP 18 Säule und am MS detektiert.

HPLC-ESI-MS Instrument

Autosampler

Pumpe und Säulenofen

Massenspektrometer

CE-ESI-MS Kopplung mit Kapillarelektrophorese

CE-MS of peptide/protein mixture

ESI Eigenschaften

Vorteil	Einschränkung	
Online Kopplung mit LC/CE	Mehrfach geladene Ionen erhöhen Komplexität	
 Sanfte Methode keine Fragmentierung erhält auch volatile, nicht-kovalente Bindungen 	Wenig tolerant gegenüber Salzen, Detergenzien, nicht-flüchtigen Puffern	
Breiter Massenbereich	Hohe Probenreinheit erforderlich	
Hohe Grundempfindlichkeit für Spurenanalyse	Diskriminierung von Substanzen möglich (Ionisationseffizienz abhängig von Moleküleigenschaften)	
Quantitativ einsetzbar		

- Analytlösung wird mit Matrixlösung vermischt und gemeinsam auf dem Target eingedampft. Verdünnung und Isolation der Analytmoleküle im Feststoffgitter
- 2. Die Energie des Laserstrahl wird von der Matrix absorbiert und führt zur Desorption von Material
- Analytmoleküle werden durch Protontransfer von den Matrixionen ionisiert: XH⁺ + M → MH⁺ + X.
- 4. Beschleunigung der Ionen in einem elektrischen Feld

MALDI Probenpräparation

Einbettung eines Farbstoffanalyten in die Matrix

Analytlösung wird mit Matrixlösung vermischt und gemeinsam auf dem Target eingedampft → Co-Kristallization von Analyt und Matrix

Ko-Kristallisation von Analyt- und Matrixmolekülen

2 mm

CHCADHBSAMikroskopische Bilder der Ko-Kristalle verschiedener Matrices

Absorption der Energie aus dem Laserstrahl durch die Matrixmoleküle (rot), Anregung der Gitterstruktur

Laser beam Angeregte Analytmoleküle Matrixmoleküle **Matrixmoleküle**

- Auflösung der oberen Lagen des Gitters, Desorption von Analytmolekülen und Matrixonen in die Gasphase.
- Anschliesse Protonenüb

Prinzip der Präparation of hydrophoben Ankern

- Reproduzierbare Probenpräparation
- Erhöhung der Empfindlichkeit durch hohere Dichte der Analytmoleküle
- Bessere Automatisierbarkeit der MS-Analyse

MALDI Matrices

Matrices und ihre Anwendungen

Matrix	Application	
2,5-Dihydroxybenzoic acid (DHB)	peptides, small proteins, oligonucleotides	
Sinapinic acid (SA)	Peptides, proteins	
α-Cyano-4-hydroxycinnamic acid (CHCA)	peptides, glycopetides	
hydroxypicolinic acid (HPA)	nucleotides	

Der MALDI Prozess ist nur im Ansatz verstanden. Daher ist die Vorhersage, ob eine Substanz als Matrix taugt, relativ schwierig, ebenso wie das "Design" geeigneter Matrices.

Die momentan am meisten eingesetzten Matrices sind immer noch die, die bereits in den 1990ern gefunden wurden.

Die erste eingesetzte MALDI Matrix war Nikotinsäure, gefunden 1987 vom Raucher Michael Karas....

MALDI Targets

Formate ähnlich wie Mikrotiterplatten

MALDI Probenpräparation

Probenlösung

Matrix-Lösung (10 mg/mL)

Mischen auf dem Probenträger

MALDI Spektren Nur einfach geladene Ionen

Sehr einfache Spektreninterpretation möglich

MALDI Spektren

Polymer characterization: Polyethylene glycol (PEG)

MALDI Spektren Grosse Moleküle

Offline Kopplung von MALDI mit HPLC

- Der Spotter legt das Eluat aus der HPLC im Abstand von ca. 10-15s auf dem MALDI Target ab.
- Wenn das Target Spot für Spot abgearbeitet wird, kann das HPLC Chromatogramm aus den diskreten Spektren rekonstruiert werden
- Vorteil: der HPLC Lauf ist quasi auf dem Target gespeichert und kann jederzeit nochmals abgearbeitet werden, wenn weitere Details untersucht werden sollen.
- Nachteil: offline Kopplung ist zeitaufwendig

MALDI Eigenschaften

Vorteil	Einschränkung
einfach geladene Ionen mit gut interpretierbaren Spektren	Probenpäration gelegentlich kritisch bzgl. Ko-Kristallisation
Relativ sanfte Methode mit begrenzter Fragmentierung	Semi-quantitativ
Breiter Massenbereich	zerstört volatile, nicht-kovalente Bindung
Hohe Grundempfindlichkeit für Spurenanalyse	Diskriminierung von Substanzen möglich (Ionisationseffizienz abhängig von Moleküleigenschaften)
Relativ tolerant gegenüber Salzen und nicht-flüchtigen Puffern	Nur offline Kopplung mit LC/CE
Einfach erlernbar, simple Methode	Schlechte Empfindlichkeit für kleine Moleküle (< 300 Da) durch Überlappung mit Matrixionen

ESI vs. MALDI

	ESI	MALDI
Kleine Moleküle	> 25 Da	> 300 Da (Matrixinterferenz)
Grosse Moleküle	bis ≥ MDa	bis ~ 500 kDa
HPLC / CE Kopplung	Online, voll automatisch	Offline, manueller Transfer
Probendurchsatz	typisch 3-6 pro h, bis zu 60 pro h	typisch 50-100 h, bis zu 1000 pro h (aber nur begrenzte Komplexität)
Robustheit	komplex durch online Kopplung und Begrenzung der Lösemittel (Ionisation)	extrem einfache Probenpräparation und Anwendung
Polarität	Variabel durch ESI, APCI und APPI	Variabel durch Anwendung von Lösemitteln
Spektrenkomplexität	Mehrfach geladene Ionen	Einfach geladene Ionen
Bildgebende Verfahren	DART, DESI (begrenzte Empfindlichkeit und laterale Auflösung, selektiv)	Imaging (hohe Empfindlichkeit und hohe laterale Auflösung)
Verbreitung	Sehr hoch	hoch